Advertisements
Advertisements
Question
If `3^(x+1)=9^(x-2),` find the value of `2^(1+x)`
Solution
`3^(x+1)=9^(x-2)`
`rArr3^x xx3=9^x/9^2`
`rArr3^x xx3=(3^2)^x/(3^2)^2`
`rArr3^x xx3=3^(2x)/3^4`
`rArr3^4xx3=3^(2x)/3^4`
`rArr3^5=3^x`
Comparing both sides, we get
x = 5
So,
`2^(1+x)=2^(1+5)=2^6=64`
APPEARS IN
RELATED QUESTIONS
Prove that:
`(x^a/x^b)^(a^2+ab+b^2)xx(x^b/x^c)^(b^2+bc+c^2)xx(x^c/x^a)^(c^2+ca+a^2)=1`
Simplify:
`root3((343)^-2)`
Show that:
`[{x^(a(a-b))/x^(a(a+b))}div{x^(b(b-a))/x^(b(b+a))}]^(a+b)=1`
Find the value of x in the following:
`5^(2x+3)=1`
If `2^x xx3^yxx5^z=2160,` find x, y and z. Hence, compute the value of `3^x xx2^-yxx5^-z.`
Simplify:
`root(lm)(x^l/x^m)xxroot(mn)(x^m/x^n)xxroot(nl)(x^n/x^l)`
Which one of the following is not equal to \[\left( \sqrt[3]{8} \right)^{- 1/2} ?\]
(256)0.16 × (256)0.09
If x = \[\frac{2}{3 + \sqrt{7}}\],then (x−3)2 =
If \[x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}\] and \[y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}\] then x + y +xy=