Advertisements
Advertisements
प्रश्न
If `3^(x+1)=9^(x-2),` find the value of `2^(1+x)`
उत्तर
`3^(x+1)=9^(x-2)`
`rArr3^x xx3=9^x/9^2`
`rArr3^x xx3=(3^2)^x/(3^2)^2`
`rArr3^x xx3=3^(2x)/3^4`
`rArr3^4xx3=3^(2x)/3^4`
`rArr3^5=3^x`
Comparing both sides, we get
x = 5
So,
`2^(1+x)=2^(1+5)=2^6=64`
APPEARS IN
संबंधित प्रश्न
Simplify the following:
`(5^(n+3)-6xx5^(n+1))/(9xx5^x-2^2xx5^n)`
If `1176=2^a3^b7^c,` find a, b and c.
If a and b are distinct primes such that `root3 (a^6b^-4)=a^xb^(2y),` find x and y.
Show that:
`((a+1/b)^mxx(a-1/b)^n)/((b+1/a)^mxx(b-1/a)^n)=(a/b)^(m+n)`
Write the value of \[\sqrt[3]{7} \times \sqrt[3]{49} .\]
For any positive real number x, write the value of \[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\]
When simplified \[\left( - \frac{1}{27} \right)^{- 2/3}\] is
If x is a positive real number and x2 = 2, then x3 =
If \[4x - 4 x^{- 1} = 24,\] then (2x)x equals
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]