Advertisements
Advertisements
प्रश्न
If x is a positive real number and x2 = 2, then x3 =
पर्याय
\[\sqrt{2}\]
2\[\sqrt{2}\]
3\[\sqrt{2}\]
4
उत्तर
We have to find `x^3`provided `x^2 = 2`. So,
By raising both sides to the power `1/2`
`x^(2 xx 1/2) = 2^(1/2)`
`x^(2 xx 1/2) = sqrt2`
`x= sqrt2`
By substituting `x= sqrt2` in `x^2` we get
`x^2 = (sqrt2)^3`
= `sqrt2 xx sqrt2 xxsqrt2`
= `2sqrt2`
The value of `x^2`is `2sqrt2`
APPEARS IN
संबंधित प्रश्न
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
Prove that:
`(1/4)^-2-3xx8^(2/3)xx4^0+(9/16)^(-1/2)=16/3`
Show that:
`(x^(1/(a-b)))^(1/(a-c))(x^(1/(b-c)))^(1/(b-a))(x^(1/(c-a)))^(1/(c-b))=1`
Find the value of x in the following:
`(13)^(sqrtx)=4^4-3^4-6`
If `3^(x+1)=9^(x-2),` find the value of `2^(1+x)`
The value of \[\left\{ 2 - 3 (2 - 3 )^3 \right\}^3\] is
The product of the square root of x with the cube root of x is
If \[x + \sqrt{15} = 4,\] then \[x + \frac{1}{x}\] =
If \[\sqrt{13 - a\sqrt{10}} = \sqrt{8} + \sqrt{5}, \text { then a } =\]
If `a = 2 + sqrt(3)`, then find the value of `a - 1/a`.