Advertisements
Advertisements
प्रश्न
If \[x + \sqrt{15} = 4,\] then \[x + \frac{1}{x}\] =
पर्याय
2
4
8
1
उत्तर
Given that .`x+sqrt15 = 4` It can be simplified as
` x =4 -sqrt15`
`1/x = 1/(4-sqrt15)`
We need to find `x+1/x`
We know that rationalization factor for `4-sqrt15 `is `4 +sqrt15`. We will multiply numerator and denominator of the given expression `1/(4-sqrt15)`by , `4+sqrt15` to get
`1/x = 1/(4-sqrt15) xx (4+sqrt15)/ (4+sqrt15) `
`= (4+sqrt15)/((4^2) - (sqrt15)^2)`
`= (4+sqrt15)/(16-15)`
`= 4+sqrt15`
Therefore,
`x +1/x = 4 - sqrt15 + 4 + sqrt15`
` = 4+ 4 `
= ` 8 `
APPEARS IN
संबंधित प्रश्न
If a = 3 and b = -2, find the values of :
aa + bb
If a = 3 and b = -2, find the values of :
(a + b)ab
Solve the following equation for x:
`2^(3x-7)=256`
If `1176=2^a3^b7^c,` find a, b and c.
Show that:
`(x^(a-b))^(a+b)(x^(b-c))^(b+c)(x^(c-a))^(c+a)=1`
For any positive real number x, find the value of \[\left( \frac{x^a}{x^b} \right)^{a + b} \times \left( \frac{x^b}{x^c} \right)^{b + c} \times \left( \frac{x^c}{x^a} \right)^{c + a}\].
If \[8^{x + 1}\] = 64 , what is the value of \[3^{2x + 1}\] ?
If o <y <x, which statement must be true?
If x = \[\frac{2}{3 + \sqrt{7}}\],then (x−3)2 =
If \[\frac{5 - \sqrt{3}}{2 + \sqrt{3}} = x + y\sqrt{3}\] , then