Advertisements
Advertisements
प्रश्न
If \[x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}\] and \[y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}\] then x + y +xy=
पर्याय
9
5
17
7
उत्तर
Given that `x=(sqrt5 +sqrt3)/(sqrt5 - sqrt3)`and `y = (sqrt5 - sqrt3)/(sqrt5 +sqrt3)`.
We are asked to find `x+y + xy`
Now we will rationalize x. We know that rationalization factor for `sqrt5 -sqrt3` is `sqrt5 +sqrt3`. We will multiply numerator and denominator of the given expression `x=(sqrt5 +sqrt3)/(sqrt5 - sqrt3)` by `sqrt5 + sqrt3`, to get
`x=(sqrt5 +sqrt3)/(sqrt5 - sqrt3) xx (sqrt5 +sqrt3)/(sqrt5 + sqrt3)`
`= ((sqrt5)^2+(sqrt3)^2+ 2 xx sqrt5 xx sqrt3)/((sqrt5)^2 - (sqrt3)^2)`
`= (5+3+2sqrt15)/(5-3)`
`= 4 + sqrt15`
Similarly, we can rationalize y. We know that rationalization factor for `sqrt5 +sqrt3`is`sqrt5 - sqrt3`. We will multiply numerator and denominator of the given expression `(sqrt5 - sqrt3)/(sqrt5+sqrt3)`by,`sqrt5 - sqrt3` to get
x = `(sqrt5 - sqrt3)/(sqrt5+sqrt3) xx (sqrt5 - sqrt3)/(sqrt5-sqrt3)`
` = ((sqrt5)^2 + (sqrt3)^2 - 2 xx sqrt5 xx sqrt3)/((sqrt5)^2 - (sqrt3)) `
`= (5+3-2sqrt15)/(5-3)`
`= (8-2sqrt15)/2`
`= 4-sqrt15`
Therefore,
`x+y+xy = 4 +sqrt15 + 4 -sqrt15 +(4+sqrt15) (4-sqrt15)`
`= 4+4 + 16 - 4sqrt15 + 4 sqrt15 - (sqrt15)^2`
` = 24 - 15 `
=` 9`
APPEARS IN
संबंधित प्रश्न
If a = 3 and b = -2, find the values of :
ab + ba
Prove that:
`1/(1+x^(b-a)+x^(c-a))+1/(1+x^(a-b)+x^(c-b))+1/(1+x^(b-c)+x^(a-c))=1`
If `a=xy^(p-1), b=xy^(q-1)` and `c=xy^(r-1),` prove that `a^(q-r)b^(r-p)c^(p-q)=1`
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
Prove that:
`((0.6)^0-(0.1)^-1)/((3/8)^-1(3/2)^3+((-1)/3)^-1)=(-3)/2`
If 2x = 3y = 12z, show that `1/z=1/y+2/x`
If `a=x^(m+n)y^l, b=x^(n+l)y^m` and `c=x^(l+m)y^n,` Prove that `a^(m-n)b^(n-l)c^(l-m)=1`
The value of x − yx-y when x = 2 and y = −2 is
The value of \[\sqrt{3 - 2\sqrt{2}}\] is
Simplify:
`(1^3 + 2^3 + 3^3)^(1/2)`