Advertisements
Advertisements
प्रश्न
The value of \[\sqrt{3 - 2\sqrt{2}}\] is
पर्याय
\[\sqrt{2} - 1\]
\[\sqrt{2} + 1\]
\[\sqrt{3} - \sqrt{2}\]
\[\sqrt{3} + \sqrt{2}\]
उत्तर
Given that:`sqrt(3 -2sqrt2)` It can be written in the form `(a-b)^2 = a^2+b^2 -2ab` as
`sqrt(3 -2sqrt2) = sqrt(2+1-2 xx 1 xxsqrt2)`
` = sqrt((sqrt2 )^2 + (1)^2 - 2 xx 1 xx sqrt2)`
`= sqrt((sqrt2-1)^2)`
` = sqrt2 - 1.`
APPEARS IN
संबंधित प्रश्न
Given `4725=3^a5^b7^c,` find
(i) the integral values of a, b and c
(ii) the value of `2^-a3^b7^c`
Show that:
`{(x^(a-a^-1))^(1/(a-1))}^(a/(a+1))=x`
If `x=2^(1/3)+2^(2/3),` Show that x3 - 6x = 6
If (x − 1)3 = 8, What is the value of (x + 1)2 ?
The value of m for which \[\left[ \left\{ \left( \frac{1}{7^2} \right)^{- 2} \right\}^{- 1/3} \right]^{1/4} = 7^m ,\] is
If 102y = 25, then 10-y equals
If 10x = 64, what is the value of \[{10}^\frac{x}{2} + 1 ?\]
If \[x = 7 + 4\sqrt{3}\] and xy =1, then \[\frac{1}{x^2} + \frac{1}{y^2} =\]
If \[x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}\] and \[y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}\] then x + y +xy=
The value of \[\sqrt{5 + 2\sqrt{6}}\] is