Advertisements
Advertisements
प्रश्न
The value of \[\sqrt{3 - 2\sqrt{2}}\] is
विकल्प
\[\sqrt{2} - 1\]
\[\sqrt{2} + 1\]
\[\sqrt{3} - \sqrt{2}\]
\[\sqrt{3} + \sqrt{2}\]
उत्तर
Given that:`sqrt(3 -2sqrt2)` It can be written in the form `(a-b)^2 = a^2+b^2 -2ab` as
`sqrt(3 -2sqrt2) = sqrt(2+1-2 xx 1 xxsqrt2)`
` = sqrt((sqrt2 )^2 + (1)^2 - 2 xx 1 xx sqrt2)`
`= sqrt((sqrt2-1)^2)`
` = sqrt2 - 1.`
APPEARS IN
संबंधित प्रश्न
Simplify the following:
`(3^nxx9^(n+1))/(3^(n-1)xx9^(n-1))`
Solve the following equation for x:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
Solve the following equations for x:
`2^(2x)-2^(x+3)+2^4=0`
Solve the following equations for x:
`3^(2x+4)+1=2.3^(x+2)`
Find the value of x in the following:
`(sqrt(3/5))^(x+1)=125/27`
If `3^(4x) = (81)^-1` and `10^(1/y)=0.0001,` find the value of ` 2^(-x+4y)`.
Show that:
`((a+1/b)^mxx(a-1/b)^n)/((b+1/a)^mxx(b-1/a)^n)=(a/b)^(m+n)`
If 24 × 42 =16x, then find the value of x.
The value of x − yx-y when x = 2 and y = −2 is
If x = 2 and y = 4, then \[\left( \frac{x}{y} \right)^{x - y} + \left( \frac{y}{x} \right)^{y - x} =\]