Advertisements
Advertisements
प्रश्न
Show that:
`((a+1/b)^mxx(a-1/b)^n)/((b+1/a)^mxx(b-1/a)^n)=(a/b)^(m+n)`
उत्तर
`((a+1/b)^mxx(a-1/b)^n)/((b+1/a)^mxx(b-1/a)^n)=(a/b)^(m+n)`
`=(((ab+1)/b)^mxx((ab-1)/b)^n)/(((ab+1)/a)^mxx((ab-1)/a)^n)`
`=(((ab+1)/b)/((ab+1)/a))^mxx(((ab-1)/b)/((ab-1)/a))^n`
`=((ab+1)/bxxa/(ab+1))^mxx((ab-1)/bxxa/(ab-1))^n`
`=(a/b)^mxx(a/b)^n`
`=(a/b)^(m+n)`
APPEARS IN
संबंधित प्रश्न
Solve the following equation for x:
`2^(x+1)=4^(x-3)`
If 2x = 3y = 12z, show that `1/z=1/y+2/x`
Find the value of x in the following:
`5^(x-2)xx3^(2x-3)=135`
Solve the following equation:
`3^(x+1)=27xx3^4`
Write the value of \[\sqrt[3]{7} \times \sqrt[3]{49} .\]
Which one of the following is not equal to \[\left( \frac{100}{9} \right)^{- 3/2}\]?
The value of \[\left\{ \left( 23 + 2^2 \right)^{2/3} + (140 - 19 )^{1/2} \right\}^2 ,\] is
The simplest rationalising factor of \[2\sqrt{5}-\]\[\sqrt{3}\] is
If \[\sqrt{2} = 1 . 4142\] then \[\sqrt{\frac{\sqrt{2} - 1}{\sqrt{2} + 1}}\] is equal to
Simplify:
`7^(1/2) . 8^(1/2)`