Advertisements
Advertisements
प्रश्न
Write the value of \[\sqrt[3]{7} \times \sqrt[3]{49} .\]
उत्तर
We have to find the value of . `3sqrt7 xx 3sqrt49.`So,
`3sqrt7 xx 3sqrt49 = 3sqrt7 xx 3sqrt49.`
`= 7^(1/3) xx 7^(2 xx 1/3)`
`= 7^(1/3) xx 7^(2 /3)`
By using law rational exponents `a^m xx a^n = a^(m+n)` we get,
`3sqrt7 xx 3sqrt49 =7^(1/3) xx 7^(2 /3)`
`= 7^(1/3+2/3 )`
`= 7^(3/3)` = 7
Hence the value of `3sqrt7 xx 3sqrt49` is 7
APPEARS IN
संबंधित प्रश्न
Simplify:
`(sqrt2/5)^8div(sqrt2/5)^13`
Find the value of x in the following:
`2^(x-7)xx5^(x-4)=1250`
If `3^(4x) = (81)^-1` and `10^(1/y)=0.0001,` find the value of ` 2^(-x+4y)`.
Which one of the following is not equal to \[\left( \frac{100}{9} \right)^{- 3/2}\]?
If a, b, c are positive real numbers, then \[\sqrt[5]{3125 a^{10} b^5 c^{10}}\] is equal to
If \[\frac{x}{x^{1 . 5}} = 8 x^{- 1}\] and x > 0, then x =
If \[2^{- m} \times \frac{1}{2^m} = \frac{1}{4},\] then \[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] is equal to
If o <y <x, which statement must be true?
If x = \[\sqrt[3]{2 + \sqrt{3}}\] , then \[x^3 + \frac{1}{x^3} =\]
If \[\sqrt{2} = 1 . 414,\] then the value of \[\sqrt{6} - \sqrt{3}\] upto three places of decimal is