Advertisements
Advertisements
प्रश्न
Simplify:
`(sqrt2/5)^8div(sqrt2/5)^13`
उत्तर
Given `(sqrt2/5)^8div(sqrt2/5)^13`
`(sqrt2/5)^8div(sqrt2/5)^13=(2^(1/2xx8)/5^8)div(2^(1/2xx13)/5^13)`
`=(2^4/5^8)div(2^(13/2)/5^13)`
`=(2^4/5^8)/(2^(13/2)/5^13)`
`=(2^4/5^8)xx(5^13/2^(13/2))`
`=(5^13/5^8)xx(2^4/2^(13/2))`
By using the law of rational exponents `a^m/a^n=a^(m-n)`
`rArr(sqrt2/5)^8div(sqrt2/5)^13=5^(13-8)xx2^(4-13/2)`
`rArr(sqrt2/5)^8div(sqrt2/5)^13=5^5xx2^((4xx2)/(1xx2)-13/2)`
`=5^5xx2^(-5/2)`
`=5^5/2^(5/2)`
`=5^5/root2(2xx2xx2xx2xx2)`
`=5^5/(4sqrt2)`
Hence the value of `(sqrt2/5)^8div(sqrt2/5)^13` is `5^5/(4sqrt2)`
APPEARS IN
संबंधित प्रश्न
Solve the following equation for x:
`4^(2x)=1/32`
If `27^x=9/3^x,` find x.
If `x=2^(1/3)+2^(2/3),` Show that x3 - 6x = 6
Simplify:
`root(lm)(x^l/x^m)xxroot(mn)(x^m/x^n)xxroot(nl)(x^n/x^l)`
Simplify \[\left[ \left\{ \left( 625 \right)^{- 1/2} \right\}^{- 1/4} \right]^2\]
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
If x = \[\frac{2}{3 + \sqrt{7}}\],then (x−3)2 =
If \[x + \sqrt{15} = 4,\] then \[x + \frac{1}{x}\] =
\[\frac{1}{\sqrt{9} - \sqrt{8}}\] is equal to
Which of the following is equal to x?