Advertisements
Advertisements
Question
Simplify:
`(sqrt2/5)^8div(sqrt2/5)^13`
Solution
Given `(sqrt2/5)^8div(sqrt2/5)^13`
`(sqrt2/5)^8div(sqrt2/5)^13=(2^(1/2xx8)/5^8)div(2^(1/2xx13)/5^13)`
`=(2^4/5^8)div(2^(13/2)/5^13)`
`=(2^4/5^8)/(2^(13/2)/5^13)`
`=(2^4/5^8)xx(5^13/2^(13/2))`
`=(5^13/5^8)xx(2^4/2^(13/2))`
By using the law of rational exponents `a^m/a^n=a^(m-n)`
`rArr(sqrt2/5)^8div(sqrt2/5)^13=5^(13-8)xx2^(4-13/2)`
`rArr(sqrt2/5)^8div(sqrt2/5)^13=5^5xx2^((4xx2)/(1xx2)-13/2)`
`=5^5xx2^(-5/2)`
`=5^5/2^(5/2)`
`=5^5/root2(2xx2xx2xx2xx2)`
`=5^5/(4sqrt2)`
Hence the value of `(sqrt2/5)^8div(sqrt2/5)^13` is `5^5/(4sqrt2)`
APPEARS IN
RELATED QUESTIONS
Prove that:
`(a^-1+b^-1)^-1=(ab)/(a+b)`
Simplify the following:
`(5xx25^(n+1)-25xx5^(2n))/(5xx5^(2n+3)-25^(n+1))`
Solve the following equation for x:
`4^(2x)=1/32`
Prove that:
`9^(3/2)-3xx5^0-(1/81)^(-1/2)=15`
Find the value of x in the following:
`2^(5x)div2x=root5(2^20)`
Find the value of x in the following:
`(sqrt(3/5))^(x+1)=125/27`
If a and b are distinct primes such that `root3 (a^6b^-4)=a^xb^(2y),` find x and y.
If 3x-1 = 9 and 4y+2 = 64, what is the value of \[\frac{x}{y}\] ?
The value of \[\sqrt{5 + 2\sqrt{6}}\] is
Simplify:
`(3/5)^4 (8/5)^-12 (32/5)^6`