Advertisements
Advertisements
Question
Find the value of x in the following:
`2^(5x)div2x=root5(2^20)`
Solution
Given `2^(5x)div2x=root5(2^20)`
By using rational exponents `a^m/a^n=a^(m-n)` we get,
`2^(5x-x)=2^(20xx1/5)`
`2^(5x-x)=2^4`
On equating the exponents we get,
5x - x = 4
4x = 4
x = 4/4
x = 1
The value of x = 1
APPEARS IN
RELATED QUESTIONS
Solve the following equation for x:
`7^(2x+3)=1`
Simplify:
`root3((343)^-2)`
If `5^(3x)=125` and `10^y=0.001,` find x and y.
If `a=x^(m+n)y^l, b=x^(n+l)y^m` and `c=x^(l+m)y^n,` Prove that `a^(m-n)b^(n-l)c^(l-m)=1`
If \[4x - 4 x^{- 1} = 24,\] then (2x)x equals
If (16)2x+3 =(64)x+3, then 42x-2 =
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
The value of \[\frac{\sqrt{48} + \sqrt{32}}{\sqrt{27} + \sqrt{18}}\] is
If \[\sqrt{13 - a\sqrt{10}} = \sqrt{8} + \sqrt{5}, \text { then a } =\]
If `a = 2 + sqrt(3)`, then find the value of `a - 1/a`.