Advertisements
Advertisements
Question
If `a=x^(m+n)y^l, b=x^(n+l)y^m` and `c=x^(l+m)y^n,` Prove that `a^(m-n)b^(n-l)c^(l-m)=1`
Solution
Given `a=x^(m+n)y^l, b=x^(n+l)y^m` and `c=x^(l+m)y^n`
Putting the values of a, b and c in `a^(m-n)b^(n-l)c^(l-m),` we get
`a^(m-n)b^(n-l)c^(l-m)`
`=(x^(m+n)y^l)^(m-n)(x^(n+l)y^m)^(n-l)(x^(l+m)y^n)^(l-m)`
`=[x^((m+n)(m-n))y(l(m-n))][x^((n+l)(n-l))y^(m(n-l))][x^((l+m)(l_m))y^(n(l-m))]`
`=x^((m^2-n^2))x^((n^2-l^2))x^((l^2-m^2))y^(lm-ln)y^(mn-ml)y^(nl-nm)`
`=x^0y^0`
= 1
APPEARS IN
RELATED QUESTIONS
Simplify:-
`2^(2/3). 2^(1/5)`
Simplify the following
`(2x^-2y^3)^3`
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^-4/y^-10)^(5/4)`
Solve the following equation:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
If `2^x xx3^yxx5^z=2160,` find x, y and z. Hence, compute the value of `3^x xx2^-yxx5^-z.`
Write the value of \[\sqrt[3]{7} \times \sqrt[3]{49} .\]
If (23)2 = 4x, then 3x =
The value of \[\left\{ 8^{- 4/3} \div 2^{- 2} \right\}^{1/2}\] is
If \[\frac{3^{2x - 8}}{225} = \frac{5^3}{5^x},\] then x =
The value of \[\frac{\sqrt{48} + \sqrt{32}}{\sqrt{27} + \sqrt{18}}\] is