Advertisements
Advertisements
प्रश्न
If `a=x^(m+n)y^l, b=x^(n+l)y^m` and `c=x^(l+m)y^n,` Prove that `a^(m-n)b^(n-l)c^(l-m)=1`
उत्तर
Given `a=x^(m+n)y^l, b=x^(n+l)y^m` and `c=x^(l+m)y^n`
Putting the values of a, b and c in `a^(m-n)b^(n-l)c^(l-m),` we get
`a^(m-n)b^(n-l)c^(l-m)`
`=(x^(m+n)y^l)^(m-n)(x^(n+l)y^m)^(n-l)(x^(l+m)y^n)^(l-m)`
`=[x^((m+n)(m-n))y(l(m-n))][x^((n+l)(n-l))y^(m(n-l))][x^((l+m)(l_m))y^(n(l-m))]`
`=x^((m^2-n^2))x^((n^2-l^2))x^((l^2-m^2))y^(lm-ln)y^(mn-ml)y^(nl-nm)`
`=x^0y^0`
= 1
APPEARS IN
संबंधित प्रश्न
Prove that:
`(x^a/x^b)^cxx(x^b/x^c)^axx(x^c/x^a)^b=1`
Prove that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
Simplify:
`(16^(-1/5))^(5/2)`
Solve the following equation:
`sqrt(a/b)=(b/a)^(1-2x),` where a and b are distinct primes.
If a and b are distinct primes such that `root3 (a^6b^-4)=a^xb^(2y),` find x and y.
The product of the square root of x with the cube root of x is
When simplified \[( x^{- 1} + y^{- 1} )^{- 1}\] is equal to
If a, b, c are positive real numbers, then \[\sqrt[5]{3125 a^{10} b^5 c^{10}}\] is equal to
\[\frac{5^{n + 2} - 6 \times 5^{n + 1}}{13 \times 5^n - 2 \times 5^{n + 1}}\] is equal to
If \[x + \sqrt{15} = 4,\] then \[x + \frac{1}{x}\] =