Advertisements
Advertisements
प्रश्न
Solve the following equation:
`sqrt(a/b)=(b/a)^(1-2x),` where a and b are distinct primes.
उत्तर
`sqrt(a/b)=(b/a)^(1-2x)`
`rArr(a/b)^(1/2)=(a/b)^(-(1-2x))`
`rArr1/2=-(1-2x)`
`rArr1/2=2x - 1`
`rArr1/2+1=2x`
`rArr1/2+(1xx2)/(1xx2)=2x`
`rArr1/2+2/2=2x`
`rArr(1+2)/2=2x`
`rArr3/2=2x`
`rArrx=3/4`
APPEARS IN
संबंधित प्रश्न
Prove that:
`(x^a/x^b)^cxx(x^b/x^c)^axx(x^c/x^a)^b=1`
Solve the following equation for x:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
Prove that:
`9^(3/2)-3xx5^0-(1/81)^(-1/2)=15`
Prove that:
`(2^(1/2)xx3^(1/3)xx4^(1/4))/(10^(-1/5)xx5^(3/5))div(3^(4/3)xx5^(-7/5))/(4^(-3/5)xx6)=10`
Find the value of x in the following:
`(3/5)^x(5/3)^(2x)=125/27`
If 1176 = `2^axx3^bxx7^c,` find the values of a, b and c. Hence, compute the value of `2^axx3^bxx7^-c` as a fraction.
If 3x-1 = 9 and 4y+2 = 64, what is the value of \[\frac{x}{y}\] ?
`(2/3)^x (3/2)^(2x)=81/16 `then x =
If \[\frac{5 - \sqrt{3}}{2 + \sqrt{3}} = x + y\sqrt{3}\] , then
The value of \[\sqrt{5 + 2\sqrt{6}}\] is