Advertisements
Advertisements
प्रश्न
Prove that:
`(2^(1/2)xx3^(1/3)xx4^(1/4))/(10^(-1/5)xx5^(3/5))div(3^(4/3)xx5^(-7/5))/(4^(-3/5)xx6)=10`
उत्तर
We have to prove that `(2^(1/2)xx3^(1/3)xx4^(1/4))/(10^(-1/5)xx5^(3/5))div(3^(4/3)xx5^(-7/5))/(4^(-3/5)xx6)=10`
Let x = `(2^(1/2)xx3^(1/3)xx4^(1/4))/(10^(-1/5)xx5^(3/5))div(3^(4/3)xx5^(-7/5))/(4^(-3/5)xx6)`
`=(2^(1/2)xx3^(1/3)xx2^(2xx1/4))/(5^(-1/5)xx2^(-1/5)xx5^(3/5))div(3^(4/3)xx5^(-7/5))/(2^(2xx(-3)/5)xx3xx2)`
`=(2^(1/2)xx3^(1/3)xx2^(1/2))/(5^(-1/5)xx2^(-1/5)xx5^(3/5))div(3^(4/3)xx5^(-7/5))/(2^(2xx(-3)/5)xx3xx2)`
`=(2^(1/2+1/2+1/5)xx3^(1/3))/(5^(-1/5+3/5))div(3^(4/3-1)xx5^(-7/5))/(2^(-6/5+1))`
`=(2^((1xx5)/(2xx5)+(1xx5)/(2xx5)+(1xx2)/(2xx5))xx3^(1/3))/5^((-1+3)/5)div(3^(4/3-(1xx3)/(1xx3))xx5^(-7/5))/2^(-6/5+(1xx5)/(1xx5))`
`=(2^(5/10+5/10+2/10)xx3^(1/3))/5^(2/5)div(3^((4-3)/3)xx5^(-7/5))/2^((-6+5)/5)`
`=(2^(12/10)xx3^(1/3))/5^(2/5)div(3^(1/3)xx5^(-7/5))/2^(-1/5)`
`=(2^(12/10)xx3^(1/3))/(5^(2/5)/1)div(3^(1/3)xx5^(-7/5))/(1/2^(1/5))`
`=(2^(12/10)xx3^(1/3)xx1/5^(2/5))/(3^(1/3)/1xx1/(5^(7/5))xx2^(1/5)/1)`
`=2^(12/10)xx3^(1/3)xx1/5^(2/5)xx1/3^(1/3)xx5^(7/5)/1xx1/2^(1/5)`
`=2^(12/10)xx1/2^(1/5)xx3^(1/3)xx1/3^(1/3)xx1/5^(2/5)xx5^(7/5)/1`
`=2^(12/10)/2^(1/5)xx5^(7/5)/5^(2/5)`
`=2^(12/10-1/5)xx5^(7/5-2/5)`
`=2^(12/10-(1xx2)/(5xx2))xx5^((7-2)/5)`
`=2^((12-2)/10)xx5^(5/5)`
`=2^(10/10)xx5^(5/5)`
= 2 x 5
= 10
Hence, `(2^(1/2)xx3^(1/3)xx4^(1/4))/(10^(-1/5)xx5^(3/5))div(3^(4/3)xx5^(-7/5))/(4^(-3/5)xx6)=10`
APPEARS IN
संबंधित प्रश्न
Simplify:-
`2^(2/3). 2^(1/5)`
Prove that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^((-2)/3)y^((-1)/2))^2`
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
Solve the following equation:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
Simplify:
`(x^(a+b)/x^c)^(a-b)(x^(b+c)/x^a)^(b-c)(x^(c+a)/x^b)^(c-a)`
If 24 × 42 =16x, then find the value of x.
If x-2 = 64, then x1/3+x0 =
If \[\sqrt{5^n} = 125\] then `5nsqrt64`=
Find:-
`32^(2/5)`