Advertisements
Advertisements
प्रश्न
If x-2 = 64, then x1/3+x0 =
पर्याय
2
3
3/2
2/3
उत्तर
We have to find the value of `x^(1/3+ x^0)` if `x^-2 = 64`
Consider,
`x^-2 = 2^6`
`1/x^2 = 2^6`
Multiply `1/2`on both sides of powers we get
`1/x^(2 xx 1/2) = 2^(6x1/2)`
`1/x^(2 xx 1/2) = 2^(6x1/2)`
`1/x = 2^3`
`1/x = 8/ 1`
By taking reciprocal on both sides we get,
`1/8 = x `
Substituting `1/8` in `x^(1/3 + x^0)`we get
`= (1/8)^(1/3) + (1/8)^0`
`= (1/(2^3))^(1/3) + (1/8)^0`
`= 1/(2^(3xx 1/3)) +1`
` = 1/2^1 + 1`
`=1/2 +1`
By taking least common multiply we get
`= 1/2 + (1 xx 2)/(1 xx 2)`
` = 1/2 + 2/2 `
`= (1+2)/2`
`= 3/2`
APPEARS IN
संबंधित प्रश्न
Prove that:
`(x^a/x^b)^(a^2+ab+b^2)xx(x^b/x^c)^(b^2+bc+c^2)xx(x^c/x^a)^(c^2+ca+a^2)=1`
Simplify the following:
`(5^(n+3)-6xx5^(n+1))/(9xx5^x-2^2xx5^n)`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrtx)^((-2)/3)sqrt(y^4)divsqrt(xy^((-1)/2))`
Find the value of x in the following:
`(sqrt(3/5))^(x+1)=125/27`
Simplify:
`root(lm)(x^l/x^m)xxroot(mn)(x^m/x^n)xxroot(nl)(x^n/x^l)`
If 3x-1 = 9 and 4y+2 = 64, what is the value of \[\frac{x}{y}\] ?
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
If x = \[\frac{2}{3 + \sqrt{7}}\],then (x−3)2 =
The value of \[\sqrt{5 + 2\sqrt{6}}\] is
Find:-
`16^(3/4)`