Advertisements
Advertisements
प्रश्न
Find the value of x in the following:
`(sqrt(3/5))^(x+1)=125/27`
उत्तर
Given `(sqrt(3/5))^(x+1)=125/27`
`(sqrt(3/5))^(x+1)=(5/3)^3`
`rArr(3/5)^((x+1)/2)=(3/5)^-3`
On comparing we get,
`(x+1)/2=-3`
⇒ x + 1 = -3 x 2
⇒ x + 1 = -6
⇒ x = -6 - 1
⇒ x = -7
Hence, the value of x = -7.
APPEARS IN
संबंधित प्रश्न
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt2/sqrt3)^5(6/7)^2`
If 2x = 3y = 12z, show that `1/z=1/y+2/x`
If 3x = 5y = (75)z, show that `z=(xy)/(2x+y)`
Find the value of x in the following:
`5^(x-2)xx3^(2x-3)=135`
The product of the square root of x with the cube root of x is
(256)0.16 × (256)0.09
If 102y = 25, then 10-y equals
If \[x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}\] and \[y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}\] then x + y +xy=
\[\frac{1}{\sqrt{9} - \sqrt{8}}\] is equal to
Find:-
`125^(1/3)`