Advertisements
Advertisements
प्रश्न
If 3x = 5y = (75)z, show that `z=(xy)/(2x+y)`
उत्तर
Let 3x = 5y = (75)z = k
`rArr3=k^(1/x),` `5=k^(1/y),` `75=k^(1/z)`
`rArr5^2xx3=k^(1/z)`
`rArr(k^(1/y))^2xxk^(1/x)=k^(1/z)`
`rArrk^(2/y)xxk^(1/x)=k^(1/z)`
`rArrk^(2/y+1/x)=k^(1/z)`
`rArr2/y+1/x=1/z`
`rArr(2x+y)/(xy)=1/z`
`rArrz=(xy)/(2x+y)`
APPEARS IN
संबंधित प्रश्न
Find:-
`64^(1/2)`
Simplify the following:
`(5xx25^(n+1)-25xx5^(2n))/(5xx5^(2n+3)-25^(n+1))`
If a and b are distinct primes such that `root3 (a^6b^-4)=a^xb^(2y),` find x and y.
If `2^x xx3^yxx5^z=2160,` find x, y and z. Hence, compute the value of `3^x xx2^-yxx5^-z.`
Which one of the following is not equal to \[\left( \frac{100}{9} \right)^{- 3/2}\]?
The value of \[\left\{ 8^{- 4/3} \div 2^{- 2} \right\}^{1/2}\] is
If (16)2x+3 =(64)x+3, then 42x-2 =
\[\frac{1}{\sqrt{9} - \sqrt{8}}\] is equal to
The value of \[\frac{\sqrt{48} + \sqrt{32}}{\sqrt{27} + \sqrt{18}}\] is
The positive square root of \[7 + \sqrt{48}\] is