Advertisements
Advertisements
प्रश्न
\[\frac{1}{\sqrt{9} - \sqrt{8}}\] is equal to
पर्याय
\[3 + 2\sqrt{2}\]
\[\frac{1}{3 + 2\sqrt{2}}\]
\[3 - 2\sqrt{2}\]
\[\frac{3}{2} - \sqrt{2}\]
उत्तर
Given that `1/(sqrt9- sqrt8)`
We know that rationalization factor for `sqrt9 - sqrt8` is `sqrt9 + sqrt8`. We will multiply numerator and denominator of the given expression `1/(sqrt9- sqrt8)`by `sqrt9 + sqrt8`, to get
`1/(sqrt9- sqrt8) xx (sqrt9 + sqrt8)/(sqrt9 + sqrt8) = (sqrt9 + sqrt8)/ ((sqrt9)^2 - (sqrt8)^2) `
` = (sqrt9 + sqrt8) / (9-8)`
` = sqrt9 +sqrt2 sqrt4`
` = 3+2+sqrt2`
APPEARS IN
संबंधित प्रश्न
If a = 3 and b = -2, find the values of :
aa + bb
Simplify the following:
`(5xx25^(n+1)-25xx5^(2n))/(5xx5^(2n+3)-25^(n+1))`
Simplify the following:
`(5^(n+3)-6xx5^(n+1))/(9xx5^x-2^2xx5^n)`
Solve the following equation for x:
`2^(5x+3)=8^(x+3)`
If 49392 = a4b2c3, find the values of a, b and c, where a, b and c are different positive primes.
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^((-2)/3)y^((-1)/2))^2`
Simplify:
`(16^(-1/5))^(5/2)`
When simplified \[(256) {}^{- ( 4^{- 3/2} )}\] is
If \[x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}\] and \[y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}\] then x + y +xy=
If \[\sqrt{2} = 1 . 4142\] then \[\sqrt{\frac{\sqrt{2} - 1}{\sqrt{2} + 1}}\] is equal to