Advertisements
Advertisements
प्रश्न
When simplified \[(256) {}^{- ( 4^{- 3/2} )}\] is
पर्याय
8
\[\frac{1}{8}\]
2
\[\frac{1}{2}\]
उत्तर
Simplify `(256)^((-4 3/2)`
`(256)^((-4 3/2))` = `(256)^-(2^2)^(3/2)`
= `(256)^((-2^(2xx - 3/2))`
= `(256)^-(2^(2xx - 3/2))`
`(256)^((-4-^(3/2))` = `(256)^(-(2) ^((-3))`
`(256)^((-4-^(3/2))` = `(256) ^(1/((-2))`
= `(256) ^(1/(-8)`
= `(2^8) ^(1/(-8)`
= `2^(8 xx 1/(-8)`
`(256)^((-4 -3/2)) = 2^(8xx 1/-8) = 1/2`
APPEARS IN
संबंधित प्रश्न
Prove that:
`(x^a/x^b)^(a^2+ab+b^2)xx(x^b/x^c)^(b^2+bc+c^2)xx(x^c/x^a)^(c^2+ca+a^2)=1`
If 49392 = a4b2c3, find the values of a, b and c, where a, b and c are different positive primes.
Show that:
`(x^(1/(a-b)))^(1/(a-c))(x^(1/(b-c)))^(1/(b-a))(x^(1/(c-a)))^(1/(c-b))=1`
Solve the following equation:
`3^(x+1)=27xx3^4`
If 1176 = `2^axx3^bxx7^c,` find the values of a, b and c. Hence, compute the value of `2^axx3^bxx7^-c` as a fraction.
If `a=x^(m+n)y^l, b=x^(n+l)y^m` and `c=x^(l+m)y^n,` Prove that `a^(m-n)b^(n-l)c^(l-m)=1`
If a, b, c are positive real numbers, then \[\sqrt{a^{- 1} b} \times \sqrt{b^{- 1} c} \times \sqrt{c^{- 1} a}\] is equal to
The value of m for which \[\left[ \left\{ \left( \frac{1}{7^2} \right)^{- 2} \right\}^{- 1/3} \right]^{1/4} = 7^m ,\] is
If \[x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}\] and \[y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}\] then x + y +xy=
Simplify:
`(9^(1/3) xx 27^(-1/2))/(3^(1/6) xx 3^(- 2/3))`