Advertisements
Advertisements
प्रश्न
If \[\frac{3^{2x - 8}}{225} = \frac{5^3}{5^x},\] then x =
पर्याय
2
3
5
4
उत्तर
We have to find the value of x provided \[\frac{3^{2x - 8}}{225} = \frac{5^3}{5^x},\]
So,
\[\frac{3^{2x - 8}}{3^2 × 5^2} = \frac{5^3}{5^x}\]
By cross multiplication we get
`3^(2x-8) xx 5^x = 3^2xx5^2 xx5^3`
By equating exponents we get
`3^(2x-8) = 3^2`
`2x - 8 = 2`
`2x= 2+8`
`2x = 10`
`x=10/2`
`x=5`
And
`5^x = 5^(3+2)`
`x=3+2`
`x=5`
APPEARS IN
संबंधित प्रश्न
If a = 3 and b = -2, find the values of :
(a + b)ab
Prove that:
`1/(1+x^(b-a)+x^(c-a))+1/(1+x^(a-b)+x^(c-b))+1/(1+x^(b-c)+x^(a-c))=1`
If 49392 = a4b2c3, find the values of a, b and c, where a, b and c are different positive primes.
Prove that:
`(64/125)^(-2/3)+1/(256/625)^(1/4)+(sqrt25/root3 64)=65/16`
Show that:
`{(x^(a-a^-1))^(1/(a-1))}^(a/(a+1))=x`
Solve the following equation:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
The simplest rationalising factor of \[\sqrt{3} + \sqrt{5}\] is ______.
If x = \[\sqrt[3]{2 + \sqrt{3}}\] , then \[x^3 + \frac{1}{x^3} =\]
If \[\sqrt{2} = 1 . 4142\] then \[\sqrt{\frac{\sqrt{2} - 1}{\sqrt{2} + 1}}\] is equal to