Advertisements
Advertisements
प्रश्न
Prove that:
`1/(1+x^(b-a)+x^(c-a))+1/(1+x^(a-b)+x^(c-b))+1/(1+x^(b-c)+x^(a-c))=1`
उत्तर
Consider the left hand side:
`1/(1+x^(b-a)+x^(c-a))+1/(1+x^(a-b)+x^(c-b))+1/(1+x^(b-c)+x^(a-c))`
`=1/(1+x^b/x^a+x^c/x^a)+1/(1+x^a/x^b+x^c/x^b)+1/(1+x^b/x^c+x^a/x^c)`
`=1/((x^a+x^b+x^c)/x^a)+1/((x^b+x^a+x^c)/x^b)+1/((x^c+x^b+x^a)/x^c)`
`=x^a/(x^a+x^b+x^c)+x^b/(x^b+x^a+x^c)+x^c/(x^c+x^b+x^a)`
`=(x^a+x^b+x^c)/(x^a+x^b+x^c)`
= 1
Therefore left hand side is equal to the right hand side. Hence proved.
APPEARS IN
संबंधित प्रश्न
Simplify the following:
`(3^nxx9^(n+1))/(3^(n-1)xx9^(n-1))`
Solve the following equation for x:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt2/sqrt3)^5(6/7)^2`
Prove that:
`9^(3/2)-3xx5^0-(1/81)^(-1/2)=15`
Show that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
If 2x = 3y = 6-z, show that `1/x+1/y+1/z=0`
Which of the following is (are) not equal to \[\left\{ \left( \frac{5}{6} \right)^{1/5} \right\}^{- 1/6}\] ?
If o <y <x, which statement must be true?
If \[\frac{5 - \sqrt{3}}{2 + \sqrt{3}} = x + y\sqrt{3}\] , then
Simplify:
`(1^3 + 2^3 + 3^3)^(1/2)`