Advertisements
Advertisements
प्रश्न
If 2x = 3y = 6-z, show that `1/x+1/y+1/z=0`
उत्तर
Let 2x = 3y = 6-z = k
`rArr2=k^(1/x),` `3=k^(1/y),` `6=k^(1/-z)`
Now,
`6 = 2xx3=k^(1/-z)`
`rArrk^(1/x)xxk^(1/y)=k^(1/-z)`
`rArrk^(1/x+1/y)=k^(1/-z)`
`rArr1/x+1/y=1/-z`
`rArr1/x+1/y+1/z=0`
APPEARS IN
संबंधित प्रश्न
If abc = 1, show that `1/(1+a+b^-1)+1/(1+b+c^-1)+1/(1+c+a^-1)=1`
Simplify the following:
`(3^nxx9^(n+1))/(3^(n-1)xx9^(n-1))`
Solve the following equation for x:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
Simplify:
`(0.001)^(1/3)`
Show that:
`[{x^(a(a-b))/x^(a(a+b))}div{x^(b(b-a))/x^(b(b+a))}]^(a+b)=1`
Show that:
`(a^(x+1)/a^(y+1))^(x+y)(a^(y+2)/a^(z+2))^(y+z)(a^(z+3)/a^(x+3))^(z+x)=1`
If `2^x xx3^yxx5^z=2160,` find x, y and z. Hence, compute the value of `3^x xx2^-yxx5^-z.`
If x is a positive real number and x2 = 2, then x3 =
If x = \[\frac{2}{3 + \sqrt{7}}\],then (x−3)2 =
If \[\sqrt{2} = 1 . 414,\] then the value of \[\sqrt{6} - \sqrt{3}\] upto three places of decimal is