Advertisements
Advertisements
Question
If 2x = 3y = 6-z, show that `1/x+1/y+1/z=0`
Solution
Let 2x = 3y = 6-z = k
`rArr2=k^(1/x),` `3=k^(1/y),` `6=k^(1/-z)`
Now,
`6 = 2xx3=k^(1/-z)`
`rArrk^(1/x)xxk^(1/y)=k^(1/-z)`
`rArrk^(1/x+1/y)=k^(1/-z)`
`rArr1/x+1/y=1/-z`
`rArr1/x+1/y+1/z=0`
APPEARS IN
RELATED QUESTIONS
Prove that:
`(a^-1+b^-1)^-1=(ab)/(a+b)`
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
Prove that:
`((0.6)^0-(0.1)^-1)/((3/8)^-1(3/2)^3+((-1)/3)^-1)=(-3)/2`
If 2x = 3y = 12z, show that `1/z=1/y+2/x`
If `2^x xx3^yxx5^z=2160,` find x, y and z. Hence, compute the value of `3^x xx2^-yxx5^-z.`
When simplified \[( x^{- 1} + y^{- 1} )^{- 1}\] is equal to
If a, b, c are positive real numbers, then \[\sqrt{a^{- 1} b} \times \sqrt{b^{- 1} c} \times \sqrt{c^{- 1} a}\] is equal to
If (16)2x+3 =(64)x+3, then 42x-2 =
The simplest rationalising factor of \[2\sqrt{5}-\]\[\sqrt{3}\] is
If \[x + \sqrt{15} = 4,\] then \[x + \frac{1}{x}\] =