English

If Ax = by = Cz and B2 = Ac, Show that `Y=(2zx)/(Z+X)` - Mathematics

Advertisements
Advertisements

Question

If ax = by = cz and b2 = ac, show that `y=(2zx)/(z+x)`

Solution

Let ax = by = cz = k

So, `a=k^(1/x),` `b=k^(1/y),` c=k^(1/z)

Thus,

`b^2 = ac`

`rArr(k^(1/y))^2=(k^(1/x))(k^(1/z))`

`rArrk^(2/y)=k^(1/x+1/z)`

`rArr2/y=1/x+1/z`

`rArr2/y=(z+x)/(xz)`

`rArr2xx(zx)/(z+x)=y`

`rArry=(2zx)/(z+x)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Exponents of Real Numbers - Exercise 2.2 [Page 25]

APPEARS IN

RD Sharma Mathematics [English] Class 9
Chapter 2 Exponents of Real Numbers
Exercise 2.2 | Q 7 | Page 25

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×