Advertisements
Advertisements
Question
Find the value of x in the following:
`2^(x-7)xx5^(x-4)=1250`
Solution
Given `2^(x-7)xx5^(x-4)=1250`
`2^(x-7)xx5^(x-4)=2^1xx625`
`2^(x-7)xx5^(x-4)=2^1xx5^4`
On equating the exponents we get,
x - 7 = 1
x = 7 + 1
x = 8
And,
x - 4 = 4
x = 4 + 4
x = 8
Hence, the value of x = 8.
APPEARS IN
RELATED QUESTIONS
If a = 3 and b = -2, find the values of :
aa + bb
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^-4/y^-10)^(5/4)`
Show that:
`{(x^(a-a^-1))^(1/(a-1))}^(a/(a+1))=x`
If `a=x^(m+n)y^l, b=x^(n+l)y^m` and `c=x^(l+m)y^n,` Prove that `a^(m-n)b^(n-l)c^(l-m)=1`
If 3x-1 = 9 and 4y+2 = 64, what is the value of \[\frac{x}{y}\] ?
Simplify \[\left[ \left\{ \left( 625 \right)^{- 1/2} \right\}^{- 1/4} \right]^2\]
If a, b, c are positive real numbers, then \[\sqrt{a^{- 1} b} \times \sqrt{b^{- 1} c} \times \sqrt{c^{- 1} a}\] is equal to
If \[2^{- m} \times \frac{1}{2^m} = \frac{1}{4},\] then \[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] is equal to
If \[x + \sqrt{15} = 4,\] then \[x + \frac{1}{x}\] =
Find:-
`125^(1/3)`