Advertisements
Advertisements
Question
If \[2^{- m} \times \frac{1}{2^m} = \frac{1}{4},\] then \[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] is equal to
Options
- \[\frac{1}{2}\]
2
4
\[- \frac{1}{4}\]
Solution
We have to find the value of \[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] provided `2^-m xx 1/2^m = 1/4`
Consider,
`2^-m xx 1/2^m = 1/4`
=`1/2^m xx 1/2^m`
= `1/(2^m xx 2^m)`
`= 1/2^(2m) = 1/2^2`
Equating the power of exponents we get
`2m = 2`
`m=2/2`
`m=1`
By substituting \[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] we get
\[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] = \[\frac{1}{14}\left\{ ( 4^m )^{1× 1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\]
`= 1/14 {2^(2xx1/2)+ 1/5^-1}`
`= 1/14 {2^(2xx1/2)+ 1/(1/5)}`
`= 1/14 {2 + 1 xx 5/1}`
\[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] = `1/14 {2+5}`
=`1/14 (7)`
`= 1/14 xx 7`
= `1/2`
APPEARS IN
RELATED QUESTIONS
Simplify:-
`2^(2/3). 2^(1/5)`
Simplify the following:
`(5^(n+3)-6xx5^(n+1))/(9xx5^x-2^2xx5^n)`
Given `4725=3^a5^b7^c,` find
(i) the integral values of a, b and c
(ii) the value of `2^-a3^b7^c`
If `a=xy^(p-1), b=xy^(q-1)` and `c=xy^(r-1),` prove that `a^(q-r)b^(r-p)c^(p-q)=1`
Assuming that x, y, z are positive real numbers, simplify the following:
`sqrt(x^3y^-2)`
Prove that:
`(1/4)^-2-3xx8^(2/3)xx4^0+(9/16)^(-1/2)=16/3`
Show that:
`[{x^(a(a-b))/x^(a(a+b))}div{x^(b(b-a))/x^(b(b+a))}]^(a+b)=1`
Show that:
`(x^(1/(a-b)))^(1/(a-c))(x^(1/(b-c)))^(1/(b-a))(x^(1/(c-a)))^(1/(c-b))=1`
If 3x = 5y = (75)z, show that `z=(xy)/(2x+y)`
Write the value of \[\left\{ 5( 8^{1/3} + {27}^{1/3} )^3 \right\}^{1/4} . \]