Advertisements
Advertisements
Question
Prove that:
`(1/4)^-2-3xx8^(2/3)xx4^0+(9/16)^(-1/2)=16/3`
Solution
We have to prove `(1/4)^-2-3xx8^(2/3)xx4^0+(9/16)^(-1/2)=16/3`
`(1/4)^-2-3xx8^(2/3)xx4^0+(9/16)^(-1/2)=1^-2/4^-2-3xx2^(3xx2/3)xx4^0+3^(2xx-1/2)/2^(4xx-1/2)`
`=1/2^(2xx-2)-3xx2^2xx4^0+3^-1/2^-2`
`=1/2^-4-3xx2^2xx4^0+3^-1/2^-2`
`=1/(1/2^4)-3xx2^2xx4^0+(1/3)/(1/2^2)`
`=1xx2^4/1-3xx2^2xx1+1/3xx2^2/1`
`=16/1-12/1+4/3`
`=16/3`
Hence, `(1/4)^-2-3xx8^(2/3)xx4^0+(9/16)^(-1/2)=16/3`
APPEARS IN
RELATED QUESTIONS
If a = 3 and b = -2, find the values of :
(a + b)ab
Prove that:
`1/(1+x^(b-a)+x^(c-a))+1/(1+x^(a-b)+x^(c-b))+1/(1+x^(b-c)+x^(a-c))=1`
Solve the following equations for x:
`3^(2x+4)+1=2.3^(x+2)`
Prove that:
`((0.6)^0-(0.1)^-1)/((3/8)^-1(3/2)^3+((-1)/3)^-1)=(-3)/2`
If 3x = 5y = (75)z, show that `z=(xy)/(2x+y)`
Find the value of x in the following:
`(sqrt(3/5))^(x+1)=125/27`
When simplified \[( x^{- 1} + y^{- 1} )^{- 1}\] is equal to
The value of \[\left\{ 8^{- 4/3} \div 2^{- 2} \right\}^{1/2}\] is
If \[x = 7 + 4\sqrt{3}\] and xy =1, then \[\frac{1}{x^2} + \frac{1}{y^2} =\]
The positive square root of \[7 + \sqrt{48}\] is