English

If X = 7 + 4 √ 3 and Xy =1, Then 1 X 2 + 1 Y 2 = - Mathematics

Advertisements
Advertisements

Question

If \[x = 7 + 4\sqrt{3}\] and xy =1, then \[\frac{1}{x^2} + \frac{1}{y^2} =\]

Options

  • 64

  • 134

  • 194

  • 1/49

MCQ

Solution

Given that `x=7+4sqrt3`, `xy = 1`

Hence  y is given as 

 `y=1/x`

 `1/x = 1/(7+4sqrt3)`

We need to find  `1/x^2+ 1/y^2`

We know that rationalization factor for   `7+4sqrt3` is `7-4sqrt3`. We will multiply numerator and denominator of the given expression `1/(7+4sqrt3)`by,`7-4sqrt3` to get

`1/x = 1/(7+4sqrt3) xx (7-4sqrt3)/(7-4sqrt3)`

`= (7-4sqrt3)/((7)^2 (4sqrt3)^2) `

` = (7-4sqrt3)/(49 - 48)`

` = 7-4sqrt3`

Since `xy=1`so we have 

 `x=1/y`

Therefore,

`1/x^2 + 1/y^2 = ( 7 - sqrt3)^2 + (7+4sqrt3)^2`

` = 7^2 + (4sqrt3)^2 - 2 xx 7 xx 4sqrt3 + 7 ^2 +(4 sqrt3)^2 + 2 xx 7 xx 4sqrt3`

`= 49 + 48 - 14 sqrt3 + 49 +48 +14sqrt3`

`= 194`

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Rationalisation - Exercise 3.4 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 9
Chapter 3 Rationalisation
Exercise 3.4 | Q 11 | Page 17

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×