Advertisements
Advertisements
Question
If \[x = 7 + 4\sqrt{3}\] and xy =1, then \[\frac{1}{x^2} + \frac{1}{y^2} =\]
Options
64
134
194
1/49
Solution
Given that `x=7+4sqrt3`, `xy = 1`
Hence y is given as
`y=1/x`
`1/x = 1/(7+4sqrt3)`
We need to find `1/x^2+ 1/y^2`
We know that rationalization factor for `7+4sqrt3` is `7-4sqrt3`. We will multiply numerator and denominator of the given expression `1/(7+4sqrt3)`by,`7-4sqrt3` to get
`1/x = 1/(7+4sqrt3) xx (7-4sqrt3)/(7-4sqrt3)`
`= (7-4sqrt3)/((7)^2 (4sqrt3)^2) `
` = (7-4sqrt3)/(49 - 48)`
` = 7-4sqrt3`
Since `xy=1`so we have
`x=1/y`
Therefore,
`1/x^2 + 1/y^2 = ( 7 - sqrt3)^2 + (7+4sqrt3)^2`
` = 7^2 + (4sqrt3)^2 - 2 xx 7 xx 4sqrt3 + 7 ^2 +(4 sqrt3)^2 + 2 xx 7 xx 4sqrt3`
`= 49 + 48 - 14 sqrt3 + 49 +48 +14sqrt3`
`= 194`
APPEARS IN
RELATED QUESTIONS
If `a=xy^(p-1), b=xy^(q-1)` and `c=xy^(r-1),` prove that `a^(q-r)b^(r-p)c^(p-q)=1`
Assuming that x, y, z are positive real numbers, simplify the following:
`sqrt(x^3y^-2)`
If ax = by = cz and b2 = ac, show that `y=(2zx)/(z+x)`
Find the value of x in the following:
`(root3 4)^(2x+1/2)=1/32`
If `3^(x+1)=9^(x-2),` find the value of `2^(1+x)`
If 1176 = `2^axx3^bxx7^c,` find the values of a, b and c. Hence, compute the value of `2^axx3^bxx7^-c` as a fraction.
When simplified \[( x^{- 1} + y^{- 1} )^{- 1}\] is equal to
The value of \[\left\{ \left( 23 + 2^2 \right)^{2/3} + (140 - 19 )^{1/2} \right\}^2 ,\] is
If \[\sqrt{5^n} = 125\] then `5nsqrt64`=
Find:-
`125^((-1)/3)`