Advertisements
Advertisements
Question
If \[\sqrt{5^n} = 125\] then `5nsqrt64`=
Options
25
\[\frac{1}{125}\]
625
\[\frac{1}{5}\]
Solution
We have to find `5nsqrt64` provided \[\sqrt{5^n} = 125\]
So,
`sqrt 5^n = 125`
`5^(nxx 1/2)= 5^3`
`n/2 = 3`
`n=3xx2`
` n =6`
Substitute ` n =6` in `5nsqrt64` to get
` `5nsqrt64 = 5^(2^(6x1/6)`
=` 5^(2^(6x1/6)`
`= 5xx5`
`=25`
Hence the value of `5nsqrt64` is 25.
APPEARS IN
RELATED QUESTIONS
If a = 3 and b = -2, find the values of :
(a + b)ab
Simplify the following:
`(3^nxx9^(n+1))/(3^(n-1)xx9^(n-1))`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt(x^-3))^5`
Assuming that x, y, z are positive real numbers, simplify the following:
`sqrt(x^3y^-2)`
Show that:
`[{x^(a(a-b))/x^(a(a+b))}div{x^(b(b-a))/x^(b(b+a))}]^(a+b)=1`
Show that:
`(x^(a^2+b^2)/x^(ab))^(a+b)(x^(b^2+c^2)/x^(bc))^(b+c)(x^(c^2+a^2)/x^(ac))^(a+c)=x^(2(a^3+b^3+c^3))`
Find the value of x in the following:
`2^(5x)div2x=root5(2^20)`
State the power law of exponents.
Write the value of \[\left\{ 5( 8^{1/3} + {27}^{1/3} )^3 \right\}^{1/4} . \]
If x= \[\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\] and y = \[\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\] , then x2 + y +y2 =