Advertisements
Advertisements
Question
Simplify the following:
`(3^nxx9^(n+1))/(3^(n-1)xx9^(n-1))`
Solution
`(3^nxx9^(n+1))/(3^(n-1)xx9^(n-1))`
`=(3^nxx(3^2)^(n+1))/(3^(n-1)xx(3^2)^(n-1))`
`=(3^nxx3^(2n+2))/(3^(n-1)xx3^(2n-2))`
`=3^(n+2n+2)/3^(n-1+2n-2)`
`=3^(3n + 2)/3^(3n-3)`
`=3^(3n+2-3n+3)`
= 35
= 243
APPEARS IN
RELATED QUESTIONS
Prove that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
Solve the following equations for x:
`3^(2x+4)+1=2.3^(x+2)`
If `1176=2^a3^b7^c,` find a, b and c.
Simplify:
`(sqrt2/5)^8div(sqrt2/5)^13`
Prove that:
`sqrt(3xx5^-3)divroot3(3^-1)sqrt5xxroot6(3xx5^6)=3/5`
Prove that:
`((0.6)^0-(0.1)^-1)/((3/8)^-1(3/2)^3+((-1)/3)^-1)=(-3)/2`
Show that:
`{(x^(a-a^-1))^(1/(a-1))}^(a/(a+1))=x`
If a and b are different positive primes such that
`((a^-1b^2)/(a^2b^-4))^7div((a^3b^-5)/(a^-2b^3))=a^xb^y,` find x and y.
If `2^x xx3^yxx5^z=2160,` find x, y and z. Hence, compute the value of `3^x xx2^-yxx5^-z.`
Find:-
`125^(1/3)`