Advertisements
Advertisements
Question
If a and b are different positive primes such that
`((a^-1b^2)/(a^2b^-4))^7div((a^3b^-5)/(a^-2b^3))=a^xb^y,` find x and y.
Solution
`((a^-1b^2)/(a^2b^-4))^7div((a^3b^-5)/(a^-2b^3))=a^xb^y`
`rArr((a^-7b^14)/(a^14b^-28))div((a^3b^-5)/(a^-2b^3))=a^xb^y`
`rArr(a^(-7-14)b^(14+28))div(a^(3+2)b^(-5-3))=a^xb^y`
`rArr(a^-21b^42)div(a^5b^-8)=a^xb^y`
`rArra^(-21-5)b^(42+8)=a^xb^y`
`rArra^-26b^50=a^xb^y`
⇒ x = -26 and y = 50
APPEARS IN
RELATED QUESTIONS
If a = 3 and b = -2, find the values of :
aa + bb
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt(x^-3))^5`
Show that:
`(x^(a-b))^(a+b)(x^(b-c))^(b+c)(x^(c-a))^(c+a)=1`
Find the value of x in the following:
`2^(x-7)xx5^(x-4)=1250`
Determine `(8x)^x,`If `9^(x+2)=240+9^x`
The value of \[\left\{ 8^{- 4/3} \div 2^{- 2} \right\}^{1/2}\] is
If 102y = 25, then 10-y equals
If \[\frac{x}{x^{1 . 5}} = 8 x^{- 1}\] and x > 0, then x =
If \[2^{- m} \times \frac{1}{2^m} = \frac{1}{4},\] then \[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] is equal to
\[\frac{5^{n + 2} - 6 \times 5^{n + 1}}{13 \times 5^n - 2 \times 5^{n + 1}}\] is equal to