Advertisements
Advertisements
Question
If 102y = 25, then 10-y equals
Options
- \[- \frac{1}{5}\]
- \[\frac{1}{50}\]
- \[\frac{1}{625}\]
- \[\frac{1}{5}\]
Solution
We have to find the value of `10^-y`
Given that, `10^(2y) = 25` therefore,
`10^(2y) = 25`
`(10^y)^2 = 5^2`
`(10^y)^(2 xx 1/2)= 5^(2 xx 1/2)`
`(10^y)^(2 xx 1/2)= 5^(2 xx 1/2)`
`10^y/1 = 5/1`
`1/5 =1/10^y`
`1/5 =10^-y`
APPEARS IN
RELATED QUESTIONS
Simplify the following
`3(a^4b^3)^10xx5(a^2b^2)^3`
Solve the following equation for x:
`2^(5x+3)=8^(x+3)`
Prove that:
`sqrt(3xx5^-3)divroot3(3^-1)sqrt5xxroot6(3xx5^6)=3/5`
Find the value of x in the following:
`2^(5x)div2x=root5(2^20)`
If `5^(3x)=125` and `10^y=0.001,` find x and y.
If 3x-1 = 9 and 4y+2 = 64, what is the value of \[\frac{x}{y}\] ?
The value of x − yx-y when x = 2 and y = −2 is
The value of \[\left\{ 8^{- 4/3} \div 2^{- 2} \right\}^{1/2}\] is
If \[\sqrt{13 - a\sqrt{10}} = \sqrt{8} + \sqrt{5}, \text { then a } =\]
Simplify:
`(9^(1/3) xx 27^(-1/2))/(3^(1/6) xx 3^(- 2/3))`