Advertisements
Advertisements
Question
Simplify the following
`3(a^4b^3)^10xx5(a^2b^2)^3`
Solution
`3(a^4b^3)^10xx5(a^2b^2)^3`
`=3xxa^40xxb^30xx5xxa^6xxb^6`
`=15xxa^40xxa^6xxb^30xxb^6`
`=15xxa^(40+6)xxb^(30+6)` `[a^mxxa^n=a^(m+n)]`
`=15a^46b^36`
APPEARS IN
RELATED QUESTIONS
Simplify the following
`(4ab^2(-5ab^3))/(10a^2b^2)`
Prove that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
Show that:
`(a^(x+1)/a^(y+1))^(x+y)(a^(y+2)/a^(z+2))^(y+z)(a^(z+3)/a^(x+3))^(z+x)=1`
If a and b are different positive primes such that
`((a^-1b^2)/(a^2b^-4))^7div((a^3b^-5)/(a^-2b^3))=a^xb^y,` find x and y.
Simplify:
`(x^(a+b)/x^c)^(a-b)(x^(b+c)/x^a)^(b-c)(x^(c+a)/x^b)^(c-a)`
State the power law of exponents.
If \[8^{x + 1}\] = 64 , what is the value of \[3^{2x + 1}\] ?
If x = 2 and y = 4, then \[\left( \frac{x}{y} \right)^{x - y} + \left( \frac{y}{x} \right)^{y - x} =\]
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
Find:-
`125^(1/3)`