Advertisements
Advertisements
प्रश्न
Simplify the following
`3(a^4b^3)^10xx5(a^2b^2)^3`
उत्तर
`3(a^4b^3)^10xx5(a^2b^2)^3`
`=3xxa^40xxb^30xx5xxa^6xxb^6`
`=15xxa^40xxa^6xxb^30xxb^6`
`=15xxa^(40+6)xxb^(30+6)` `[a^mxxa^n=a^(m+n)]`
`=15a^46b^36`
APPEARS IN
संबंधित प्रश्न
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
Prove that:
`9^(3/2)-3xx5^0-(1/81)^(-1/2)=15`
Show that:
`(x^(a^2+b^2)/x^(ab))^(a+b)(x^(b^2+c^2)/x^(bc))^(b+c)(x^(c^2+a^2)/x^(ac))^(a+c)=x^(2(a^3+b^3+c^3))`
If ax = by = cz and b2 = ac, show that `y=(2zx)/(z+x)`
Solve the following equation:
`sqrt(a/b)=(b/a)^(1-2x),` where a and b are distinct primes.
Write \[\left( \frac{1}{9} \right)^{- 1/2} \times (64 )^{- 1/3}\] as a rational number.
The square root of 64 divided by the cube root of 64 is
The value of m for which \[\left[ \left\{ \left( \frac{1}{7^2} \right)^{- 2} \right\}^{- 1/3} \right]^{1/4} = 7^m ,\] is
If \[x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}\] and \[y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}\] then x + y +xy=
If \[\sqrt{13 - a\sqrt{10}} = \sqrt{8} + \sqrt{5}, \text { then a } =\]