Advertisements
Advertisements
प्रश्न
Show that:
`(x^(a^2+b^2)/x^(ab))^(a+b)(x^(b^2+c^2)/x^(bc))^(b+c)(x^(c^2+a^2)/x^(ac))^(a+c)=x^(2(a^3+b^3+c^3))`
उत्तर
`(x^(a^2+b^2)/x^(ab))^(a+b)(x^(b^2+c^2)/x^(bc))^(b+c)(x^(c^2+a^2)/x^(ac))^(a+c)=x^(2(a^3+b^3+c^3))`
LHS = `(x^(a^2+b^2)/x^(ab))^(a+b)(x^(b^2+c^2)/x^(bc))^(b+c)(x^(c^2+a^2)/x^(ac))^(a+c)`
`=(x^(a^2+b^2-ab))^(a+b)(x^(b^2+c^2-bc))^(b+c)(x^(c^2+a^2-ac))^(a+c)`
`=[x^((a+b)(a^2+b^2-ab))][x^((b+c)(b^2+c^2-bc))][x^((a+c)(c^2+a^2-ac))]`
`=(x^(a^3+b^3))(x^(b^3+c^3))(x^(a^3+c^3))`
`=x^(2(a^3+b^3+c^3))`
= RHS
APPEARS IN
संबंधित प्रश्न
If a = 3 and b = -2, find the values of :
(a + b)ab
Solve the following equation for x:
`4^(2x)=1/32`
Solve the following equation for x:
`2^(3x-7)=256`
If `a=xy^(p-1), b=xy^(q-1)` and `c=xy^(r-1),` prove that `a^(q-r)b^(r-p)c^(p-q)=1`
Prove that:
`sqrt(3xx5^-3)divroot3(3^-1)sqrt5xxroot6(3xx5^6)=3/5`
Simplify:
`root(lm)(x^l/x^m)xxroot(mn)(x^m/x^n)xxroot(nl)(x^n/x^l)`
Write the value of \[\sqrt[3]{125 \times 27}\].
Write the value of \[\left\{ 5( 8^{1/3} + {27}^{1/3} )^3 \right\}^{1/4} . \]
If \[\frac{3^{2x - 8}}{225} = \frac{5^3}{5^x},\] then x =
Which of the following is equal to x?