Advertisements
Advertisements
प्रश्न
Solve the following equation for x:
`4^(2x)=1/32`
उत्तर
`4^(2x)=1/32`
`rArr(2^2)^(2x)=1/2^5`
`rArr2^(4x)xx2^5=1`
`rArr2^(4x+5)=2^0`
⇒ 4x + 5 = 0
⇒ 4x = -5
`rArr x=-5/4`
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
Simplify the following
`(2x^-2y^3)^3`
Simplify the following
`((4xx10^7)(6xx10^-5))/(8xx10^4)`
If a = 3 and b = -2, find the values of :
ab + ba
Prove that:
`(2^n+2^(n-1))/(2^(n+1)-2^n)=3/2`
Find the value of x in the following:
`(root3 4)^(2x+1/2)=1/32`
If `5^(3x)=125` and `10^y=0.001,` find x and y.
The value of \[\left\{ \left( 23 + 2^2 \right)^{2/3} + (140 - 19 )^{1/2} \right\}^2 ,\] is
If 9x+2 = 240 + 9x, then x =
If g = `t^(2/3) + 4t^(-1/2)`, what is the value of g when t = 64?
If \[x + \sqrt{15} = 4,\] then \[x + \frac{1}{x}\] =