Advertisements
Advertisements
प्रश्न
The value of \[\left\{ \left( 23 + 2^2 \right)^{2/3} + (140 - 19 )^{1/2} \right\}^2 ,\] is
पर्याय
196
289
324
400
उत्तर
We have to find the value of `{(23+2^2)^(2/3)+ (140- 19 )^(1/2) }^2`
`{(23+2^2)^(2/3)+ (140- 19 )^(1/2) }^2 = {(23+4)^(2/3)+ (121)^(1/2) }^2`
= `{(27)^(2/3)+ (121)^(1/2) }^2`
`={(3^3)^(2/3)+ (11^2)^(1/2) }^2`
`{(23+2^2)^(2/3)+ (140- 19 )^(1/2) }^2`= ` {3^(3 xx2/3) +11
^( 2xx 1/2)}^2`
` = {3^(3 xx2/3) +11^( 2xx 1/2)}^2`
= `{3^2 + 11}^2`
`⇒ {(23+2^2)^(2/3)+ (140- 19 )^(1/2) }^2 = {9+11}^2`
By using the identity `(a+b)^2 = a^2 +2ab +b^2` we get,
`= 9 xx 9 +2 xx 9 xx 11 + 11 xx 11`
`= 81 +198 +121`
`= 400`
APPEARS IN
संबंधित प्रश्न
Prove that:
`(a+b+c)/(a^-1b^-1+b^-1c^-1+c^-1a^-1)=abc`
Simplify the following:
`(6(8)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(8)^n)`
Simplify:
`(16^(-1/5))^(5/2)`
Prove that:
`(2^(1/2)xx3^(1/3)xx4^(1/4))/(10^(-1/5)xx5^(3/5))div(3^(4/3)xx5^(-7/5))/(4^(-3/5)xx6)=10`
Find the value of x in the following:
`2^(x-7)xx5^(x-4)=1250`
Which of the following is (are) not equal to \[\left\{ \left( \frac{5}{6} \right)^{1/5} \right\}^{- 1/6}\] ?
If a, b, c are positive real numbers, then \[\sqrt{a^{- 1} b} \times \sqrt{b^{- 1} c} \times \sqrt{c^{- 1} a}\] is equal to
The simplest rationalising factor of \[2\sqrt{5}-\]\[\sqrt{3}\] is
The value of \[\sqrt{3 - 2\sqrt{2}}\] is
Simplify:-
`(1/3^3)^7`