Advertisements
Advertisements
प्रश्न
Simplify the following:
`(6(8)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(8)^n)`
उत्तर
`(6(8)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(8)^n)`
`=(6(2^3)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(2^3)^n)`
`=(6(2^(3n+3))+16(2)^(3n-2))/(10(2)^(3n+1)-7(2^(3n)))`
`=(6xx2^(3n)(2^3)+16(2)^(3n)2^-2)/(10(2)^(3n)(2^1)-7(2^(3n)))`
`=(2^(3n)((6xx2^3)+(16xx1/2^2)))/(2^(3n)((10xx2)-7))`
`=((6xx8)+(16xx1/4))/(20-7)`
`=(48+4)/(13)`
`=52/13`
= 4
APPEARS IN
संबंधित प्रश्न
Show that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
If 2x = 3y = 6-z, show that `1/x+1/y+1/z=0`
Solve the following equation:
`4^(2x)=(root3 16)^(-6/y)=(sqrt8)^2`
If 1176 = `2^axx3^bxx7^c,` find the values of a, b and c. Hence, compute the value of `2^axx3^bxx7^-c` as a fraction.
Write \[\left( \frac{1}{9} \right)^{- 1/2} \times (64 )^{- 1/3}\] as a rational number.
The square root of 64 divided by the cube root of 64 is
Which one of the following is not equal to \[\left( \frac{100}{9} \right)^{- 3/2}\]?
If a, b, c are positive real numbers, then \[\sqrt{a^{- 1} b} \times \sqrt{b^{- 1} c} \times \sqrt{c^{- 1} a}\] is equal to
If \[\frac{3^{5x} \times {81}^2 \times 6561}{3^{2x}} = 3^7\] then x =
If \[x = 7 + 4\sqrt{3}\] and xy =1, then \[\frac{1}{x^2} + \frac{1}{y^2} =\]