Advertisements
Advertisements
प्रश्न
The square root of 64 divided by the cube root of 64 is
पर्याय
64
2
\[\frac{1}{2}\]
642/3
उत्तर
We have to find the value of `(2sqrt64)/(3sqrt64)`
So,
`(2sqrt64)/(3sqrt64) = (2(sqrt2 xx 2 xx 2 xx 2 xx 2 xx 2) )/(2(sqrt2 xx 2 xx 2 xx 2 xx 2 xx 2) )`
`= 2^(6xx 1/2)`
`= 2^(6xx 1/3)`
`= 2^(6xx 1/2)/2^(6xx 1/3)`
`(2sqrt64)/(3sqrt64) = 2^3/2^2`
`=2^(3-2)`
`=2^1`
= 2
The value of `(2sqrt64)/(3sqrt64)` is 2.
Hence the correct choice is b.
APPEARS IN
संबंधित प्रश्न
Simplify:
`root(lm)(x^l/x^m)xxroot(mn)(x^m/x^n)xxroot(nl)(x^n/x^l)`
If `x = a^(m+n),` `y=a^(n+l)` and `z=a^(l+m),` prove that `x^my^nz^l=x^ny^lz^m`
Which of the following is (are) not equal to \[\left\{ \left( \frac{5}{6} \right)^{1/5} \right\}^{- 1/6}\] ?
If \[8^{x + 1}\] = 64 , what is the value of \[3^{2x + 1}\] ?
When simplified \[\left( - \frac{1}{27} \right)^{- 2/3}\] is
The value of m for which \[\left[ \left\{ \left( \frac{1}{7^2} \right)^{- 2} \right\}^{- 1/3} \right]^{1/4} = 7^m ,\] is
If \[\frac{3^{5x} \times {81}^2 \times 6561}{3^{2x}} = 3^7\] then x =
\[\frac{1}{\sqrt{9} - \sqrt{8}}\] is equal to
If \[\sqrt{13 - a\sqrt{10}} = \sqrt{8} + \sqrt{5}, \text { then a } =\]
Simplify:
`11^(1/2)/11^(1/4)`