Advertisements
Advertisements
प्रश्न
Which of the following is (are) not equal to \[\left\{ \left( \frac{5}{6} \right)^{1/5} \right\}^{- 1/6}\] ?
पर्याय
\[\left\{ \left( \frac{5}{6} \right)^\frac{1}{5} \right\}^{- \frac{3}{6}}\]
\[\frac{1}{\left\{ \left( \frac{5}{6} \right)^{1/5} \right\}^{1/6}}\]
\[\left( \frac{6}{5} \right)^{1/30}\]
\[\left( \frac{5}{6} \right)^{- 1/30}\]
उत्तर
We have to find the value of `{(5/6)^(1/5)}^((-1) / 6)`
So,
`{(5/6)^(1/5)}^((-1) / 6) = 5^(1/5 xx (-1)/6) / 6^(1/5 xx (-1)/6)`
`=5^(-1/30)/(6^((-1)/30))`
`=(1/(5^(-1/30))) / (1/(6^(1/30))`
`{(5/6)^(1/5)}^((-1) / 6)` = `1/(5^(1/30)) xx (6^(1/30))/1`
= `(6^(1/30))/5^(1/30)`
= `(6/5)^(1/30)`
APPEARS IN
संबंधित प्रश्न
Simplify the following
`((4xx10^7)(6xx10^-5))/(8xx10^4)`
Simplify the following
`((x^2y^2)/(a^2b^3))^n`
Solve the following equation for x:
`2^(3x-7)=256`
If 2x = 3y = 12z, show that `1/z=1/y+2/x`
If a and b are different positive primes such that
`((a^-1b^2)/(a^2b^-4))^7div((a^3b^-5)/(a^-2b^3))=a^xb^y,` find x and y.
If a and b are different positive primes such that
`(a+b)^-1(a^-1+b^-1)=a^xb^y,` find x + y + 2.
Write the value of \[\sqrt[3]{125 \times 27}\].
`(2/3)^x (3/2)^(2x)=81/16 `then x =
The value of \[\left\{ \left( 23 + 2^2 \right)^{2/3} + (140 - 19 )^{1/2} \right\}^2 ,\] is
If x = \[\frac{2}{3 + \sqrt{7}}\],then (x−3)2 =