Advertisements
Advertisements
प्रश्न
Simplify the following
`((x^2y^2)/(a^2b^3))^n`
उत्तर
`((x^2y^2)/(a^2b^3))^n`
`=((x^2)^n(y^2)^n)/((a^2)^n(b^3)^n)`
`=(x^(2n)y^(2n))/(a^(2n)b^(3n))`
APPEARS IN
संबंधित प्रश्न
Simplify the following:
`(6(8)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(8)^n)`
Solve the following equation for x:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt2/sqrt3)^5(6/7)^2`
Prove that:
`((0.6)^0-(0.1)^-1)/((3/8)^-1(3/2)^3+((-1)/3)^-1)=(-3)/2`
Find the value of x in the following:
`(sqrt(3/5))^(x+1)=125/27`
Solve the following equation:
`8^(x+1)=16^(y+2)` and, `(1/2)^(3+x)=(1/4)^(3y)`
If a, m, n are positive ingegers, then \[\left\{ \sqrt[m]{\sqrt[n]{a}} \right\}^{mn}\] is equal to
If x is a positive real number and x2 = 2, then x3 =
If x= \[\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\] and y = \[\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\] , then x2 + y +y2 =
The value of \[\sqrt{3 - 2\sqrt{2}}\] is