Advertisements
Advertisements
प्रश्न
If x= \[\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\] and y = \[\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\] , then x2 + y +y2 =
पर्याय
101
99
98
102
उत्तर
Given that `x= (sqrt3 - sqrt2) /(sqrt3 + sqrt2)` and `y = (sqrt3 + sqrt2) /(sqrt3 - sqrt2)`.
We need to find `x^2 +xy +y^2`
Now we will rationalize x. We know that rationalization factor for `sqrt3+sqrt2` is `sqrt3-sqrt2` `sqrt3+sqrt2`. We will multiply numerator and denominator of the given expression `x= (sqrt3 - sqrt2) /(sqrt3 + sqrt2)` by `sqrt3 - sqrt2`, to get
`x = `x= (sqrt3 - sqrt2) /(sqrt3 + sqrt2) xx (sqrt3 - sqrt2) /(sqrt3 - sqrt2)`
`= ((sqrt3)^2 +(sqrt2)^2 - 2 xx sqrt3 xx sqrt2)/((sqrt3)^2 - (sqrt2)^2)`
`= (3+2-2sqrt6)/(3-2)`
` = 5-2sqrt6`
Similarly, we can rationalize y. We know that rationalization factor for `sqrt3 - sqrt2` is `sqrt3 +sqrt2`. We will multiply numerator and denominator of the given expression `(sqrt3 +sqrt2) /(sqrt3 - sqrt2)`by `sqrt3 + sqrt2`, to get
`y = (sqrt3 + sqrt2) /(sqrt3 - sqrt2) xx (sqrt3 + sqrt2) /(sqrt3 +sqrt2)`
`= ((sqrt3)^2 +(sqrt2)^2 +2 xx sqrt3 xx sqrt2)/((sqrt3)^2 - (sqrt2)^2)`
`= (3+2-2sqrt6)/(3-2)`
` = 5-2sqrt6`
Therefore,
`x^2 + xy + y ^ 2 = ( 5 - 2 sqrt6 )^2+ (5-2sqrt6) (5 + 2 sqrt6)+ (5+2sqrt6)^2`
` = 5^2 +(2sqrt6 )^2 - 2 xx 5 xx 2 sqrt6 +5^2 - (2sqrt6 )^2+ 5^2 + (2sqrt6)^2 + 2xx 5 xx 2sqrt6`
` = 25 +24 -20sqrt6 +25 - 24 +25 +24 +20sqrt6`
` = 49 + 1+ 49`
` = 99`
APPEARS IN
संबंधित प्रश्न
Solve the following equation for x:
`4^(2x)=1/32`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt(x^-3))^5`
Assuming that x, y, z are positive real numbers, simplify the following:
`root5(243x^10y^5z^10)`
Simplify:
`root3((343)^-2)`
Simplify:
`((25)^(3/2)xx(243)^(3/5))/((16)^(5/4)xx(8)^(4/3))`
Show that:
`(a^(x+1)/a^(y+1))^(x+y)(a^(y+2)/a^(z+2))^(y+z)(a^(z+3)/a^(x+3))^(z+x)=1`
If ax = by = cz and b2 = ac, show that `y=(2zx)/(z+x)`
If 3x = 5y = (75)z, show that `z=(xy)/(2x+y)`
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
If 10x = 64, what is the value of \[{10}^\frac{x}{2} + 1 ?\]