Advertisements
Advertisements
प्रश्न
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt(x^-3))^5`
उत्तर
We have to simplify the following, assuming that x, y, z are positive real numbers
Given `(sqrt(x^-3))^5`
As x is positive real number then we have
`(sqrt(x^-3))^5=(sqrt(1/x^3))^5`
`=(sqrt1/sqrt(x^3))^5`
`=(1/x^(3xx1/2))^5`
`=(1/x^(3/2))`
`(sqrt(x^-3))^5=(1^5/x^(3/2xx5))`
`=1/x^(15/2)`
Hence the simplified value of `(sqrt(x^-3))^5` is `1/x^(15/2)`
APPEARS IN
संबंधित प्रश्न
Simplify the following
`(a^(3n-9))^6/(a^(2n-4))`
Assuming that x, y, z are positive real numbers, simplify the following:
`root5(243x^10y^5z^10)`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt2/sqrt3)^5(6/7)^2`
Determine `(8x)^x,`If `9^(x+2)=240+9^x`
Simplify:
`root(lm)(x^l/x^m)xxroot(mn)(x^m/x^n)xxroot(nl)(x^n/x^l)`
The square root of 64 divided by the cube root of 64 is
If 10x = 64, what is the value of \[{10}^\frac{x}{2} + 1 ?\]
\[\frac{5^{n + 2} - 6 \times 5^{n + 1}}{13 \times 5^n - 2 \times 5^{n + 1}}\] is equal to
The value of \[\sqrt{5 + 2\sqrt{6}}\] is
Simplify:
`(9^(1/3) xx 27^(-1/2))/(3^(1/6) xx 3^(- 2/3))`