Advertisements
Advertisements
प्रश्न
Determine `(8x)^x,`If `9^(x+2)=240+9^x`
उत्तर
`9^(x+2)=240+9^x`
`rArr9^x xx 9^2=240+9^x`
`rArr9^x(9^2-1)=240`
`rArr9^x(81-1)=240`
`rArr9^x xx80=240`
`rArr9^x=240/80`
`rArr3^(2x)=3^1`
⇒ 2x = 1
`rArrx=1/2`
`therefore(8x)^x=(8xx1/2)^(1/2)=(4)^(1/2)=2`
APPEARS IN
संबंधित प्रश्न
Find:-
`64^(1/2)`
If a = 3 and b = -2, find the values of :
ab + ba
Simplify the following:
`(5^(n+3)-6xx5^(n+1))/(9xx5^x-2^2xx5^n)`
Solve the following equation for x:
`7^(2x+3)=1`
If `a=xy^(p-1), b=xy^(q-1)` and `c=xy^(r-1),` prove that `a^(q-r)b^(r-p)c^(p-q)=1`
Solve the following equation:
`4^(2x)=(root3 16)^(-6/y)=(sqrt8)^2`
Simplify:
`root(lm)(x^l/x^m)xxroot(mn)(x^m/x^n)xxroot(nl)(x^n/x^l)`
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
If x = \[\sqrt[3]{2 + \sqrt{3}}\] , then \[x^3 + \frac{1}{x^3} =\]
Simplify:
`(1^3 + 2^3 + 3^3)^(1/2)`