Advertisements
Advertisements
प्रश्न
Solve the following equation:
`4^(2x)=(root3 16)^(-6/y)=(sqrt8)^2`
उत्तर
`4^(2x)=(root3 16)^(-6/y)=(sqrt8)^2`
`rArr4^(2x)=(sqrt8)^2` and `(root3 16)^(-6/y)=(sqrt8)^2`
`rArr4^(2x)=(8^1/2xx2)` and `(16^(1/3xx-6/y))=(8^1/2xx2)`
`rArr4^(2x)=8` and `(16^(-2/y))=8`
`rArr2^(4x)=2^3` and `(2^(-8/y))=2^3`
`rArr4x=3` and `-8/y=3`
`rArrx=3/4` and `y=-8/3`
APPEARS IN
संबंधित प्रश्न
Simplify the following
`((4xx10^7)(6xx10^-5))/(8xx10^4)`
Simplify:
`(0.001)^(1/3)`
Prove that:
`(2^(1/2)xx3^(1/3)xx4^(1/4))/(10^(-1/5)xx5^(3/5))div(3^(4/3)xx5^(-7/5))/(4^(-3/5)xx6)=10`
If 2x = 3y = 6-z, show that `1/x+1/y+1/z=0`
Find the value of x in the following:
`(13)^(sqrtx)=4^4-3^4-6`
The value of x − yx-y when x = 2 and y = −2 is
`(2/3)^x (3/2)^(2x)=81/16 `then x =
If a, m, n are positive ingegers, then \[\left\{ \sqrt[m]{\sqrt[n]{a}} \right\}^{mn}\] is equal to
If o <y <x, which statement must be true?
Find:-
`125^((-1)/3)`