Advertisements
Advertisements
प्रश्न
Find:-
`125^((-1)/3)`
उत्तर
We can write the given expression as follows
⇒ `125^((-1)/3) = (5^3)^((-1)/3)`
On simplifying
⇒ `125^((-1)/3) = 5^(3 xx (-1)/3)`
⇒ `125^((-1)/3) = 5^(-1)`
∴ `125^((-1)/3) = 1/5`
APPEARS IN
संबंधित प्रश्न
Simplify the following
`3(a^4b^3)^10xx5(a^2b^2)^3`
Find the value of x in the following:
`(2^3)^4=(2^2)^x`
If a and b are distinct primes such that `root3 (a^6b^-4)=a^xb^(2y),` find x and y.
If (23)2 = 4x, then 3x =
The value of m for which \[\left[ \left\{ \left( \frac{1}{7^2} \right)^{- 2} \right\}^{- 1/3} \right]^{1/4} = 7^m ,\] is
The value of \[\left\{ \left( 23 + 2^2 \right)^{2/3} + (140 - 19 )^{1/2} \right\}^2 ,\] is
If \[2^{- m} \times \frac{1}{2^m} = \frac{1}{4},\] then \[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] is equal to
If \[\sqrt{2} = 1 . 4142\] then \[\sqrt{\frac{\sqrt{2} - 1}{\sqrt{2} + 1}}\] is equal to
Find:-
`32^(1/5)`
Find:-
`32^(2/5)`