Advertisements
Advertisements
प्रश्न
Find:-
`125^((-1)/3)`
उत्तर
We can write the given expression as follows
⇒ `125^((-1)/3) = (5^3)^((-1)/3)`
On simplifying
⇒ `125^((-1)/3) = 5^(3 xx (-1)/3)`
⇒ `125^((-1)/3) = 5^(-1)`
∴ `125^((-1)/3) = 1/5`
APPEARS IN
संबंधित प्रश्न
Simplify the following
`3(a^4b^3)^10xx5(a^2b^2)^3`
Prove that:
`(x^a/x^b)^(a^2+ab+b^2)xx(x^b/x^c)^(b^2+bc+c^2)xx(x^c/x^a)^(c^2+ca+a^2)=1`
Prove that:
`(a+b+c)/(a^-1b^-1+b^-1c^-1+c^-1a^-1)=abc`
If abc = 1, show that `1/(1+a+b^-1)+1/(1+b+c^-1)+1/(1+c+a^-1)=1`
Solve the following equations for x:
`2^(2x)-2^(x+3)+2^4=0`
Simplify \[\left[ \left\{ \left( 625 \right)^{- 1/2} \right\}^{- 1/4} \right]^2\]
When simplified \[(256) {}^{- ( 4^{- 3/2} )}\] is
If o <y <x, which statement must be true?
The simplest rationalising factor of \[\sqrt{3} + \sqrt{5}\] is ______.
Simplify:
`11^(1/2)/11^(1/4)`