Advertisements
Advertisements
प्रश्न
When simplified \[(256) {}^{- ( 4^{- 3/2} )}\] is
विकल्प
8
\[\frac{1}{8}\]
2
\[\frac{1}{2}\]
उत्तर
Simplify `(256)^((-4 3/2)`
`(256)^((-4 3/2))` = `(256)^-(2^2)^(3/2)`
= `(256)^((-2^(2xx - 3/2))`
= `(256)^-(2^(2xx - 3/2))`
`(256)^((-4-^(3/2))` = `(256)^(-(2) ^((-3))`
`(256)^((-4-^(3/2))` = `(256) ^(1/((-2))`
= `(256) ^(1/(-8)`
= `(2^8) ^(1/(-8)`
= `2^(8 xx 1/(-8)`
`(256)^((-4 -3/2)) = 2^(8xx 1/-8) = 1/2`
APPEARS IN
संबंधित प्रश्न
Simplify the following
`3(a^4b^3)^10xx5(a^2b^2)^3`
Simplify the following
`(2x^-2y^3)^3`
Find the value of x in the following:
`(sqrt(3/5))^(x+1)=125/27`
Solve the following equation:
`4^(2x)=(root3 16)^(-6/y)=(sqrt8)^2`
If 24 × 42 =16x, then find the value of x.
Write the value of \[\sqrt[3]{7} \times \sqrt[3]{49} .\]
Simplify \[\left[ \left\{ \left( 625 \right)^{- 1/2} \right\}^{- 1/4} \right]^2\]
`(2/3)^x (3/2)^(2x)=81/16 `then x =
If \[\frac{x}{x^{1 . 5}} = 8 x^{- 1}\] and x > 0, then x =
The value of \[\frac{\sqrt{48} + \sqrt{32}}{\sqrt{27} + \sqrt{18}}\] is